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Abstract8

Underwater digital inline holography can provide high-resolution, in situ imagery of marine particles9

and offers many advantages over alternative measurement approaches. However, processing of holograms10

requires computationally expensive reconstruction and processing, and computational cost increases with11

the size of the imaging volume. In this work, a processing pipeline is developed to extract targets from12

holograms where target distribution is relatively sparse without reconstruction of the full hologram. This13

is motivated by the desire to efficiently extract quantitative estimates of plankton abundance from a data14

set (>300,000 holograms) collected in the Northwest Atlantic using a large-volume holographic camera.15

First, holograms with detectable targets are selected using a transfer learning approach. This was critical16

as a subset of the holograms were impacted by optical turbulence, which obscured target detection. Then,17

target diffraction patterns are detected in the hologram. Finally, targets are reconstructed and focused18

using only a small region of the hologram around the detected diffraction pattern. A search algorithm is19

employed to select distances for reconstruction, reducing the number of reconstructions required for 1 mm20

focus precision from 1000 to 31. When compared with full reconstruction techniques, this method detects21

99% of particles larger than 0.1 mm2, a size class which includes most copepods and larger particles of22

marine snow, and 85% of those targets are sufficiently focused for classification. This approach requires23

1% of the processing time required to compute full reconstructions, making processing of long time-series,24

large imaging volume holographic data sets feasible.25

1 Introduction26

Marine particles, such as marine snow and plankton, play a critical role in ocean food webs [Anderson et al.,27

2018], global environmental change [Lombard et al., 2019], and ocean carbon cycling [Koski et al., 2020].28

However, quantitative in situ measurements of particle abundance are challenging to obtain and typically29

require trade-offs between measurement range and resolution. Direct sampling using nets or bottles provides30

the most precise morphological measurements of samples, but may destroy less robust particles, like marine31

snow, during sampling and does not provide insight into spatial distribution (i.e., patchiness). High-frequency32

echosounders can measure abundance over relatively long ranges and provide estimates of abundance and33

organism type, but typically cannot provide species-level classification or size distributions [Lavery et al.,34

2007]. Conversely, optical imaging systems such as the video plankton recorder [Davis et al., 2005] and in35

situ ichthyoplankton imaging system [Cowen and Guigand, 2008] can provide high resolution imagery of36

plankton in situ, but have comparatively small imaging volumes.37

Digital inline holography (DIH) has the potential to address some of these challenges and produce38

high-resolution imagery over relatively large imaging volumes [Loomis, 2011, Nayak et al., 2021]. A digital in-39

line holographic microscope (DIHM) records the diffraction patterns of particles within an imaging volume.40

The recorded diffraction patterns (referred to as a hologram) can then be numerically reconstructed at the41

depth of the particles to produce a focused image. Particle concentrations measured using a DIHM have been42

shown to be comparable to established methods, while counting more particles per recording (e.g., larger43

sample size) [Walcutt et al., 2020]. Recent technological advances have made underwater DIHM systems44

commercially available [Sun et al., 2007], and as a result they have seen increasing use for marine particle45

measurements (e.g., Nayak et al. [2018], Greer et al. [2020], Walcutt et al. [2020]).46

While the advantages of DIH for measuring marine particles are clear, unfortunately, interpretation47

of recorded holograms is not straightforward. The depth of a particle within the imaging volume is typically48

not known a priori, and must be determined based on the depth of the reconstruction where it is in focus.49

While several methods exist for hologram reconstruction, the angular spectrum method [Ratcliffe, 1956],50

has been shown to perform best for DIH [Sun et al., 2008, Fonesca et al., 2016]. Reconstruction by this51

method requires calculation of the two-dimensional Fourier transform of the hologram, propagation of the52

frequency content to the desired depth within the imaging volume, and calculation of the two-dimensional53

inverse Fourier transformation to produce the reconstruction [Latychevskaia and Fink, 2015]. Using the54

fast Fourier Transform (FFT) algorithm, both the two-dimensional Fourier transform and its inverse are55

O(2NM log2NM) complexity operations for a hologram measuring M x N pixels [Cooley and Tukey, 1965].56
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This means that the computational cost of reconstruction increases non-linearly with the number of pixels in57

the hologram and is directly proportional to the depth resolution of the reconstruction and size of the imaging58

volume (i.e., number of reconstructions computed). In addition to computational cost, reconstruction also59

produces significant data volumes - each reconstruction has the same number of pixels as the raw hologram,60

so reconstruction produces tens or hundreds of times more data than the raw holograms. Finally, individual61

particles must be located within the reconstruction, and the complexity of this search will scale with the62

number of reconstructions.63

Recent advances in hologram processing have automated this process by using target detection64

algorithms and focus or sharpness metrics to detect particles and determine the reconstruction depth where65

they are in focus. Fonesca et al. [2016] evaluated 15 metrics for determining the reconstruction where a66

particle is in focus and evaluated trade-offs between performance and processing requirements for each metric.67

Walcutt et al. [2020] developed a processing pipeline that performs high-resolution hologram reconstruction,68

then computes a sharpness score for each pixel in the resulting reconstructions. Particles are determined69

to be where there are neighboring pixels with relatively high focus scores. Nayak et al. [2018] use a similar70

approach, but instead of performing analysis pixel-by-pixel, use a focus metric to determine the most in-focus71

reconstruction for 0.6 x 0.6 mm sub-regions of the hologram. The focused regions are then assembled into a72

composite image that contains the focused targets in a two-dimensional plane.73

While these methods represent significant advances in DIH capabilities and have enabled analysis74

of larger data sets than previously possible, they still require computationally expensive high-resolution75

reconstruction of the hologram prior to target detection and focusing. Most studies to date have used DIHM76

systems with relatively small imaging volumes (e.g., separation distances of 4 and 1.8 cm in Nayak et al.77

[2018] and Walcutt et al. [2020], respectively) and data sets (e.g., less than 1 hour of data collected at 15 Hz78

analyzed in [Greer et al., 2020]). Processing schemes that avoid high-resolution reconstruction would enable79

analysis of larger (e.g., long time series) data sets and data from larger imaging volume DIHMs.80

Guo et al. [2021] addresses the computational cost of hologram reconstruction by employing deep81

learning to classify particles based on their diffraction patterns in the raw hologram, eliminating the need for82

reconstruction. When a particle is relatively close to the camera, the diffraction pattern tends to resemble the83

shape of the target. For small imaging volumes (e.g., 4 cm separation distance in the referenced publication),84

this means that many particles can be classified without reconstruction. However, when particles are farther85

from the camera (larger imaging volume) their diffraction patterns no longer resemble the particle, meaning86

that this approach is not translatable to systems with larger imaging volumes. Further, Guo et al. [2021] do87

not evaluate the accuracy of target detection based on diffraction patterns in the raw hologram.88

Here, we present a processing pipeline to extract and focus targets without reconstruction of the89

full hologram. First, we use deep learning to select holograms suitable for automatic processing (Section90

2.3). Then, we detect the diffraction patterns of targets in the raw hologram (Section 2.4), and reconstruct91

these targets using only a small window around the diffraction pattern (Section 2.5). A search algorithm is92

used to reduce the number of reconstructions required to find the focus depth of the target. By reducing the93

size of the hologram used for reconstruction and the number of reconstructions required, this approach offers94

a significant reduction in computational cost and data storage requirements compared to existing methods.95

The processing pipeline is evaluated using data collected by a DIHM with a relatively large imaging volume96

(approximately 1 m separation distance; 0.88 L imaging volume) deployed in the mesopelagic zone in the97

Northeast Atlantic. In this work, we do not attempt to estimate particle abundance, rather, our intent is to98

present methods to rapidly extract targets from large holographic data sets that will enable future analysis99

and development of automatic classification algorithms.100

2



Figure 1: Left: Diagram of the DIHM assembly (not to scale). Right: A raw hologram that is not affected
by optical turbulence (top) and its reconstruction at the depth of a particle (bottom). Zoomed-in views of
the diffraction pattern and reconstructed particle, a copepod, are shown in the insets. An out-of-focus target
(i.e., target is at a different depth than the reconstruction) is visible in the upper right-hand corner of the
reconstruction.

2 Materials and Procedures101

2.1 Instrumentation and Data102

Data were collected using Deep-See, a towed instrumentation platform that integrates active acoustic, optical,103

and environmental sensors to study the mesopelagic zone (200-1000 m depth) of the ocean [Bassett et al.,104

2020]. Deep-See includes a custom Seascan Inc. digital in-line holographic microscope (DIHM) with a 16105

megapixel camera and a 658 nm wavelength collimated laser light source with a 102.4 cm separation distance106

(Figure 1). Recorded holograms are 4864 x 3232 pixels. This configuration results in a pixel size of 7.4 µm107

(hologram dimensions are 3.6 cm x 2.4 cm; imaging volume of 0.88 L). After passing through the imaging108

volume, the laser travels 23 cm in air within the camera housing before reaching the camera lens. This109

relatively large imaging volume configuration was selected to maximize detections of zooplankton in sparse110

environments such as our study region. A diagram of the DIHM and sample data are shown in Figure 1.111

Deep-See was deployed 10 times (approximately 100 total hours of holographic data collection)112

during a 24 July - 7 August 2019 cruise in the Northeast Atlantic off of the New England continental shelf113

break. During these deployments, vessel speed was approximately two knots. The holographic camera114

collected data at 1 Hz, meaning that approximately 360,000 holograms were acquired over the course of the115

cruise. Here, we use data from one of these deployments, conducted on August 4, 2019, to develop and116

validate automatic processing methods. During this 11-hour deployment, the depth of the platform varied117

between 0 and 800 m and all data were collected during daytime hours.118
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Data processing is implemented in Python and performed on a desktop computer with an i9-119

9900 Intel(R) Core Processor and an Intel(R) UHD Graphics 630 GPU. We present processing times on this120

computer for comparison with alternative methods, but note that processing times will depend on computing121

resources.122

2.2 Hologram Reconstruction123

Where required, hologram reconstruction is performed using the angular spectrum method following the124

algorithm presented in Latychevskaia and Fink [2015]. For a given hologram, H(x, y), the reconstruction,125

U(x, y), is calculated as:126

U(x, y) = FT−1

(
FT (H(x, y))× exp

2πizo
λ

√
1− (λu)2 − (λv)2)

)
, (1)

where FT and FT−1 indicate the Fourier transform and inverse Fourier transform, respectively; λ is the127

laser wavelength, in m; and u and v denote the Fourier domain coordinates. For a given reconstruction, the128

inverse optical path length, zo, is:129

zo =

∫ z

0

1

n(z)
dl, (2)

where z is the physical path length from the camera to the reconstruction depth, and n(z) is the index of130

refraction along the laser path [Loomis, 2011]. For the DIHM system used here, starting at the camera, the131

laser travels through air (na = 1.0003) for a distance La = 23 cm, before travelling through seawater (nw =132

1.3314) for a distance Lw = 102.4 cm. Therefore, within the imaging volume (23 < z < 125.4 cm), zo can133

be related to z:134

zo = La/na + (z − La)/nw. (3)

Slight variations in the indices of refraction due to temperature change with depth and geographical location135

are negligible [Bashkatov and Genina, 2003]. In the following sections, we refer to the physical path length,136

z, as the reconstruction depth.137

2.3 Hologram Selection: Detecting Optical Turbulence138

Optical turbulence (i.e., variations in the index of refraction due to turbulence-induced fluctuations in tem-139

perature and salinity) [Korotkova, 2019] created interference in some holograms collected by Deep-See (Figure140

2), presenting a challenge for automatic target detection. In some cases, it was still possible to classify targets141

in reconstructions of these holograms, but interference resulted in a large number of false positive target de-142

tections and reduced the efficacy of focus metrics. Because these false positives result in high CPU loads and143

inaccurate estimates of particle abundance, we use an automatic classification scheme to detect holograms144

containing interference from optical turbulence and remove them from the processing pipeline. We note that145

while optical turbulence is “noise” in this application, these holograms resemble data used to study optical146

turbulence [Bogucki et al., 1994, Kulikov, 2016], and may contain useful information about temperature and147

salinity gradients. While a quantitative analysis of trends in optical turbulence is beyond the scope of this148

work, qualitatively, holograms affected by optical turbulence were more prevalent near the surface (depth149

less than 100 m).150

2.3.1 Optical Turbulence Detection Training Data151

A training data set containing 328 holograms (50% had visible interference from turbulence) was assembled152

to train the hologram selection algorithm. The training data included holograms from water depths ranging153

from 0 to 500 m to ensure that the algorithm was insensitive to ambient light levels and turbulence length154
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scales. Because interference from optical turbulence is straightforward to identify in the raw holograms155

(Figure 2), human annotation was performed on the raw, unreconstructed holograms.156

2.3.2 Optical Turbulence Detection Algorithm157

A transfer-learning approach [Weiss et al., 2016] is used for classification. Generally, transfer learning refers158

to approaches where an existing, trained machine learning model is used as a starting point for a different159

classification task. This allows for fine-tuning of the model using a relatively small volume of training data,160

while still leveraging information learned from massive training data sets. Here, the VGG19 deep neural161

network (pre-trained using the ImageNet database) [Simonyan and Zisserman, 2015] is used to extract162

features from each hologram. Because the VGG19 network was trained using 224 x 224 pixel color images (3163

color planes), and the recorded holograms are 4864 x 3232 gray-scale images (1 color plane), the holograms164

are re-scaled to 224 x 224 pixels and tiled to create an array with dimensions 244 x 224 x 3 prior to feature165

extraction. This was necessary to match the dimensions of the VGG19 input layer. The feature extraction166

segment of the VGG19 network produces a vector of 1000 features for each hologram. Extracted features167

from the training data set were normalized by subtracting the mean and scaling to unit variance, then used168

to train a support vector machine (SVM) [Burges, 1998] with a radial basis function (RBF) kernel and γ =169

0.001 (1/number of features) for binary classification.170

2.3.3 Optical Turbulence Detection Evaluation171

Due to the relatively small training data set, cross-validation was performed using leave-one-out validation.172

The SVM was trained as described in the previous section using all but one hologram in the training data173

set, and then used to classify the excluded hologram, before repeating this process for each hologram in the174

training data set.175

To assess classification performance, precision, recall, and accuracy are calculated. Here, precision176

is defined as the fraction of holograms predicted to contain interference from optical turbulence that were177

correctly classified; recall is the number of holograms annotated as containing interference that were correctly178

classified; and accuracy is the fraction of all holograms that were correctly classified.179

2.4 Diffraction Pattern Detection180

In most holograms in the collected data, particle distribution is relatively sparse (i.e., most of the imaging181

volume does not contain a particle). Therefore, computation time can be reduced by avoiding reconstruction182

of regions of the hologram that do not contain a particle (i.e., background). Here, we present an algorithm183

to detect the diffraction patterns of particles in unreconstructed holograms. We note that this approach may184

not be appropriate for data sets where particle density is higher (e.g., Nayak et al. [2018]).185

2.4.1 Diffraction Pattern Detection Algorithm186

The diffraction pattern detection algorithm is outlined in Figure 3. As in Davies et al. [2015], Guo et al.187

[2021], and [Nayak et al., 2018], the first processing step is background subtraction. Nonuniform light levels,188

scratches in the camera housing, biofouling, and slight camera misalignment resulted in nonuniformity in189

the background intensity. Because light levels vary with water depth and time of day and biofouling may190

accrue over the course of a deployment, the background intensity level is updated for each hologram using191

the median of the previous 5 recorded holograms rather than using a static background for all data. The192

background intensity level is then subtracted from each hologram before further processing (Figure 3b).193

Given the data acquisition rate of 1 Hz and the vessel speed of 2 knots, the imaging volumes of successive194
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Figure 2: Top: Raw holograms without interference from optical turbulence. Bottom: Raw holograms with
interference from optical turbulence. Diffraction patterns of targets are visible in the rightmost example, but
interference from turbulence reduces the efficacy of automatic target detection and results in false positive
target detections.
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Figure 3: Flow chart detailing the diffraction pattern detection algorithm. a) Raw hologram before process-
ing, b) hologram after background subtraction, c) background-subtracted hologram after applying low-pass
filter retaining only the lowest 5% of spatial frequencies (colors are inverted to highlight diffraction patterns),
d) application of a threshold to create a binary image, e) morphological opening to join pixels associated with
the same diffraction pattern, and f) diffraction pattern bounding boxes shown on raw hologram. Diffraction
patterns are numbered for reference in subsequent figures.

holograms did not overlap, allowing us to use this relatively small window for background subtraction. For a195

stationary system or a system with a faster acquisition rate, a larger background window may be necessary196

to avoid targets that persist in multiple holograms.197

Next, a series of filters are applied to highlight particle diffraction patterns. First, the two-198

dimensional Fourier transform of the background-subtracted hologram is computed and a low-pass filter199

is applied to retain only the lowest 5% of spatial frequencies. The inverse Fourier transform of the filtered200

frequency-domain data yields a hologram where the diffraction patterns of particles are clearly distinguishable201

(Figure 3c). To separate particle diffraction patterns from the background, an empirically-tuned intensity202

threshold is applied to create a binary image (Figure 3d). Then, morphological opening (erosion by a square203

structuring element of size le, followed by dilation by a square structuring element of size ld) is performed204

to remove noise and close any holes (Figure 3e). Finally, any regions in the binary image larger than an205

empirically-tuned area threshold, Amin, are detected (Figure 3f). The bounding box of each detected diffrac-206

tion pattern (smallest box containing the area in the binary image) is retained for reconstruction and focusing207

of the particle (see Section 2.5).208

2.4.2 Diffraction Pattern Detection Evaluation209

To evaluate the performance of the diffraction pattern detection algorithm, the positions of detected diffrac-210

tion patterns were compared to target detection on high-resolution full hologram reconstructions. To do this,211

we followed a similar approach as in Nayak et al. [2018]: a focus metric is used to determine the depth of212
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Test ID
Amin

(mm2)
le
(pixels)

ld
(pixels)

A 0.5 20 60
B 1 20 60
C 2 20 60
D 1 10 60

Table 1: Diffraction pattern detection parameters: Amin, the diffraction pattern area threshold; le, the size
of the morphological erosion filter; and ld, the size of the morphological dilation filter

any particles in sub-regions of a high-resolution reconstruction of the full hologram. First, the hologram was213

reconstructed with approximately 1 mm depth resolution (1000 reconstructions per hologram). Then, the214

hologram was divided into a 1 mm x 1 mm grid (135 x 135 pixels), and a focus metric was used to determine215

which, if any, reconstruction contained an in focus target within each grid cell. Nayak et al. [2018] determined216

which reconstruction plane was most in-focus based on the region that had the most pixels with intensity217

above an empirically tuned threshold. Here, we avoid tuning and instead employ the standard deviation218

correlation function, fsc, as a focus metric, which Fonesca et al. [2016] found was both unimodal and offers219

an reasonable trade-off between computation time and performance. For a given region of a reconstruction,220

U(x, y):221

fsc =
1

MN

M−1∑
m=1

N−1∑
n=1

U(m,n)U(m+ 1, n+ 1)

µU
−MNµ2

U , (4)

where M and N are the dimensions of U(x, y), and µU is the average intensity of U(x, y). This metric is222

slightly modified from the definition in Equation 16 of Fonesca et al. [2016] to normalize the reconstruction223

by the mean, as we found this improved unimodality in variable light conditions.224

For each grid cell, the reconstruction with the highest value of fsc was retained to create a composite,225

two-dimensional image containing all focused targets in a single plane. If fsc did not exceed an empirically226

tuned threshold (fsc = 1.5) for any reconstruction in a given grid cell, that grid cell was assumed to not227

contain a target and set to zero in the composite image. This approach requires the assumption that there is228

only one particle in each 1 mm x 1 mm grid cell. Particles larger than 1 mm x 1 mm should still be focused229

assuming that the focus metric is maximized for each region of the particle.230

Thresholding and a series of morphological filters were then used to detect targets in the composite231

image. First, the composite image was binarized by applying Otsu’s method [Otsu, 1979] to each individual232

grid cell. Then, morphological opening was performed to remove noise in the image and close small holes.233

Finally, targets in the binarized image were extracted, and those whose longest dimension (major axis) did234

not exceed .07 mm (10 pixels) were rejected, as the low resolution of these targets would likely preclude even235

coarse human classification.236

This ground truth target detection scheme was implemented for 217 randomly selected holograms.237

The bounding boxes of ground truth targets were compared to those extracted using the diffraction pattern238

detection method described in the previous section. A ground truth target was considered to be detected239

if more than 75% of the target area was contained within the diffraction pattern bounding box. Target240

detection accuracy is presented as a function of the size of the ground truth target, defined as its area in the241

binarized composite image, and is analyzed for varying values of Amin and le, as described in Table 1.242

2.5 Target Reconstruction243

Reconstruction is performed using only a small window around each detected diffraction pattern. Initial244

analysis of this approach showed that, when a sufficient window around the diffraction pattern bounding245

box is used, reconstruction using only the region of the hologram around the detected diffraction pattern246

produces imagery that is nearly as high-resolution as reconstruction using the full hologram, but at much247
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Figure 4: Left: Illustration of target bounding box (red) and reconstruction window (grey). Right: Target
reconstruction using varying window sizes for diffraction patterns 1, 2, and 3 detected in the raw hologram
shown in Figure 3. Columns indicate the size of the window around the bounding box included in the
reconstruction, l. The rightmost column for each target shows reconstruction resolution when the full
hologram is reconstructed (e.g., all available information is used).

lower computational cost. We define the window around a diffraction pattern used for reconstruction as248

follows: if the bounding box of the diffraction pattern is (x, y, w, h), where x and y are the coordinates249

of the lower left-hand corner of bounding box, respectively, and w and h are the width and height of the250

bounding box, respectively, the region of the hologram used in reconstruction (H(x, y) in Equation 1) is251

(x− l, y − l, w + 2l, h+ 2l), where l is the window size (Figure 4).252

2.5.1 Target Reconstruction Algorithm253

Reconstruction and focusing of detected diffraction patterns are performed in parallel using the golden254

section search algorithm [Woodford and Phillips, 1997] to find the maximum value of fsc (Equation 4). For255

the DIHM system used here, the minimum and maximum values of z are zmin = 0.230 m and zmax = 1.254256

m (i.e., any target within the imaging volume must be in focus at some depth, zf , between zmin and zmax).257

Reconstruction of the extracted hologram region is performed at each value of z used in the golden section258

search, and fsc is calculated for each reconstruction to determine the next reconstruction depth. Assuming259

fsc(z) is unimodal, this approach reduces the number of reconstructions required to determine zf with 1 mm260

precision from 1000 to 31. Figure 5 shows fsc(z) for diffraction pattern 2 in Figure 3, including the points261

used in the golden section search. We note that this approach could be employed with any unimodal focus262

metric, but fsc proved to perform well for this data set.263

2.5.2 Target Reconstruction Evaluation264

The combined reconstruction and focusing algorithm was evaluated using 321 targets identified during human265

review, including marine snow and various species of plankton. First, the performance of fsc as a focus metric266

was evaluated using a 1 mm resolution reconstruction of the target (1000 reconstructions per target) with267

a window size of l = 2.5 mm, and the reconstruction with the maximum value of fsc was stored for later268

analysis. Then, the golden section search reconstruction/focusing algorithm was implemented with 1 mm269

resolution for the same 321 targets.270
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Figure 5: Standard deviation correlation function focus metric (fsc) as a function of distance from the
camera for diffraction pattern 2 in Figure 3 (a copepod). The 31 points used in the golden section search
are indicated by blue dots, and reconstructions at representative points used by the search algorithm are
shown. The large inset shows the reconstruction at the maximum value of fsc. Note that resolution increases
close to the focus depth and not all points used by the golden section search are visible in this figure due to
overlap.

The automatically focused reconstructions produced by both methods (full reconstruction and271

golden section search) were reviewed manually to determine whether the reconstructed target was adequately272

in focus for classification. Each reconstructed target was annotated as 1) in focus, 2) slightly out of focus,273

but sufficiently focused for coarse classification, or 3) out of focus (classification not possible). We note that274

the distinction between 1) and 2) is qualitative, and differentiation between these two classes is subject to275

human bias.276

2.6 End-to-End Evaluation277

The full hologram processing pipeline (hologram selection, target detection, and target reconstruction/focusing)278

was used to process 5,663 holograms sampled by Deep-See. These holograms were selected from two regions279

of the deployment where the depth of Deep-See was relatively constant: approximately 0.5 hours where280

Deep-See was at 300 m depth, and approximately 1.5 hours where Deep-See was at 450 m depth. First, the281

hologram selection algorithm was used to determine whether turbulence precluded automatic target detec-282

tion. Diffraction patterns were then detected using the parameters in Test B in Table 1 and reconstructed283

following the procedures in Section 2.5. These diffraction pattern detection parameters were selected as they284

offered an optimal trade-off between precision and recall for targets larger than 0.1 mm2 (see Section 3.2).285

A window size of l = 2.5 mm was used for determination of zf , before calculating a higher-resolution286

reconstruction at zf using a window size of l = 6 mm. These window sizes were selected empirically and287

validated through analysis of the automatically focused targets (i.e., a satisfactory fraction of extracted288

targets was sufficiently focused for classification). A JPEG image containing each reconstructed target was289

recorded for later analysis. The title of each file contained the timestamp of the hologram from which it290

originated, the bounding box of the target, and zf .291

The two-dimensional area of each reconstructed target, At, was used as a proxy for target size. As292

in Section 2.4, Otsu’s method was used to binarize the extracted bounding box and separate foreground and293

background pixels (Figure 6). The number of targets detected as a function of At and zf is used to evaluate294
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Figure 6: Two representative extracted targets and their binarized images after applying Otsu’s method. a)
shows a copepod and b) shows a marine snow particle.

biases in the processing pipeline. Finally, the reconstructed targets from 534 randomly selected holograms295

were manually reviewed and labeled as sufficiently or insufficiently focused for human classification.296

3 Assessment297

3.1 Hologram Selection298

In cross-validation, the combined VGG19-SVM transfer learning approach classified the 328 holograms in299

the training data set with 94% precision, 91% recall, and 93% accuracy. We note that this classification300

model would likely not produce the same results for data collected with a different DIHM or in a different301

environment without re-training with additional data.302

3.2 Target Detection303

Figure 7 shows the fraction of ground truth targets detected using the diffraction pattern detection method304

(recall) as a function of target size for each set of diffraction pattern detection parameters (Table 1) and the305

number of ground truth targets in each size range. Target abundance decreased with target size, and data306

are only presented for target size ranges where more than two targets were detected. Recall varied with the307

size of the area threshold, Amin, and the size of the structuring element used for morphological erosion, le.308

Precision also varied between tests: 85%, 94%, 95%, and 82% of detected diffraction patterns corresponded309

to a ground truth target for tests A, B, C, and D, respectively.310

For tests A, B, and D, 99% of targets larger than 0.1 mm2 were detected. For test C (largest value311

of Amin), only 82% of targets larger than 0.1 mm2 were detected, indicating that the diffraction patterns of312

many targets in this size range were smaller than 2 mm2 in the hologram. The superior performance of test313

D (smallest value of le) to test A (smallest value of Amin) for targets smaller than 0.1 mm2 indicates that314

the erosion filter may have removed the diffraction patterns of some smaller targets. However, the larger315

erosion filter also reduced the number of false positives, resulting in higher precision for test A than test D.316

For all tests, a steep roll-off in detection capabilities is observed for targets smaller than 0.075 mm2. While317

larval organisms or small particles of marine snow may be smaller than this size threshold, many species318

of copepods, an abundant organism of particular interest in the mesopelagic [Koski et al., 2020], will be319

significantly larger than this threshold given body lengths exceeding 1 mm [Conway, 2006]. Further, given320

the pixel resolution of the DIHM, such particles would have fewer than 1370 pixels (37 pixel square), and321

likely be difficult to classify.322
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Figure 7: Top: Fraction of targets detected using the diffraction pattern detection method (recall) as a
function of target area for each test in Table 1 (le is the size of the morphological erosion filter, and Amin

is the diffraction pattern area threshold); bottom: number of ground truth targets as a function of target
area. Note that the y-axis is on a logarithmic scale.

3.3 Target Auto-focusing323

Figure 8 shows the percent of targets that were in focus, sufficiently focused for classification, and out-of-324

focus using the two focusing methods, and Figure 9 shows results of automatic focusing and fsc(z) for several325

representative targets. The standard deviation correlation function performed relatively well as a focus metric326

- using 1 mm resolution “full” reconstruction, 89% of targets were either in focus or sufficiently focused at327

the maximum value of fsc. The golden section search method achieved nearly equivalent performance (88%328

of targets were in focus or sufficiently focused) while requiring 3% of the number of reconstructions. On329

average, the focus depths, zf , determined by the two methods agreed within 5.8 mm, and they agreed within330

1 mm for 62% of targets. Agreement between the two methods supports the assumption of unimodality331

required for the golden section search.332

In two cases in the evaluation data, there were two targets at different reconstruction depths within333

the bounding box. In both cases, there were two peaks in fsc and the two methods focused different targets.334

Identification of targets with overlapping diffraction patterns is a limitation of any approach that assumes335

a target is focused where a focus metric is maximized. While the relative sparsity of targets in the data336

presented here indicates that this will not have a significant impact on results, detection of multiple targets337

with overlapping diffraction patterns could be addressed through implementation a peak-finding method338

that allows for multiple targets in the same reconstruction. We note that in the results represented in Figure339

8, these two cases were classified as “out of focus.”340
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Figure 8: Fraction of targets using each focusing method classified by a human reviewer as in focus, sufficiently
focused for classification, and out-of-focus using full reconstructions (“Full”) and the golden section search
method (“Golden”).

3.4 End-to-End Evaluation341

Only 0.2% (12 holograms) of the processed data were classified as containing optical turbulence and removed342

from the processing pipeline. An average of 2.9 target diffraction patterns were detected and reconstructed343

in each hologram. 83% of human-reviewed reconstructed regions contained a target that was sufficiently344

focused for human classification. Of the remaining 17% of reconstructed regions, 82% contained an out-of-345

focus target that could not be classified and 18% did not contain a visible target. The latter case does not346

necessarily indicate that a target was not present (false positive), because it is possible that the automatically-347

determined focus depth was sufficiently far from the true focus depth that the target was not visible in the348

reconstruction.349

Figure 10 shows the fraction of targets detected at varying ranges from the camera, pA, for different350

particle sizes for all processed holograms. For targets smaller than 0.1 mm2, the probability of target351

detection generally decreases with range (though a slight increase is observed between the 250-235 mm and352

435-639 mm range bins). This is likely a result of the fact that that the diffraction patterns of smaller353

targets farther from the camera are lower intensity due to attenuation of the light. In conjunction with the354

relatively low target detection recall for targets in this size range (Figure 7), this indicates that accurate355

particle abundance estimates cannot be obtained for targets smaller than 0.1 mm2 using these detection356

parameters.357

For targets between 0.1 and 0.3 mm2, more targets are detected towards the center of the imaging358

volume (z = 435-1049 mm), indicating that while target detection recall is high for particles in this size range359

(Figure 7), hydrodynamic effects from the camera and laser housings may influence particle position near360

the edges of the imaging volume. Representative abundance estimates for particles in this size range may361

require limiting analysis to the center of the imaging volume. This trend is not as clear for larger particles362

(> 0.3 mm2), though this may be due to the relatively small number of particles in this size range (n = 200).363

On average, our processing pipeline took 8 seconds to detect and reconstruct targets from a holo-364
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Figure 9: The focus metric, fsc for the full reconstruction and the results of automatic focusing using a 1
mm resolution full reconstruction of the target (“Full”) and the golden section search method (“Golden”) for
four representative targets: a) a copepod which was in focus using both methods, b) a copepod which was
classified as sufficiently focused for coarse classification, c) marine snow which was focused using the golden
section search method, but not the full reconstruction, and d) a copepod which was focused using the full
reconstruction, but not the golden section search method.
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Figure 10: Probability of target detection as a function of particle size and range from the camera.

gram, though computation time varied with the number and size of detected targets. For comparison, calcu-365

lation of full 1 mm resolution reconstructions (Section 2.4.2) took approximately 16 minutes per hologram,366

not including time required to write reconstructions to disk or detect targets. We note that reconstruction367

was performed on the GPU for both methods. The extracted targets from all 5663 processed holograms368

totaled 500 MB, compared to 6 MB required for a hologram reconstruction at a single depth (6 GB for a369

full 1 mm resolution reconstruction). All reconstructions and extracted targets were stored as JPEG files.370

4 Discussion and Conclusions371

This paper addresses the computational challenges of analyzing underwater holograms with the development372

and demonstration of a processing pipeline to rapidly extract focused targets from underwater digital holo-373

grams. This processing pipeline includes selection of holograms for target detection, detection and windowing374

of diffraction patterns in the raw hologram, then reconstruction of each window.375

The classification algorithm for hologram selection focused on excluding images with interference376

from optical turbulence; these holograms are most likely to result in ineffective target detection/reconstruction,377

and are therefore not worth the computational expense of reconstruction. We note that the exclusion of378

these holograms from further processing may result in systematic biases in particle density estimations at379

strong density interfaces where optical turbulence is persistent, and this should be considered in interpre-380

tation of results. The transfer learning approach was found to have 93% accuracy, and has potential in381

many applications for selection of particular holograms most likely to result in successful reconstruction.382

For example, one use of DIHM is detection of oil droplets and gas bubbles in water, useful in the area of383

oil spill mapping and response [White et al., 2016]. Automatic target detection can be used to quantify384

droplet count and therefore oil density, however, like the data analyzed in this work, not all holograms are385

suitable for automatic processing. When oil droplet density is too high, the hologram becomes saturated,386

and reconstruction of these holograms results in artificially low droplet estimates. Preliminary analysis of387

holographic data of oil droplets collected in a flume has found that a similar transfer-learning based approach388
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is suitable for identification of saturated holograms in a data set collected using a Seascan DIHM in an oil389

flume.390

In the second step of the processing pipeline, the diffraction patterns of targets are detected in391

the raw holograms. When compared to target detection using full hologram reconstructions, this approach392

detected over 99% of targets larger than 0.1 mm2 with 95% precision. Smaller targets can be detected393

through tuning of diffraction pattern detection parameters, though this increased the number of false positives394

(decreasing precision). However, smaller targets were less frequently detected at longer range from the395

camera, likely due to attenuation of the light, and this should be considered when estimating particle density.396

The minimum detectable target size will be a function of the size of the imaging volume and the resolution397

of the camera.398

Finally, detected diffraction patterns are simultaneously reconstructed and focused using the golden399

section search algorithm to maximize a focus metric, achieving nearly equivalent performance to application400

of the same focus metric on a high-resolution reconstruction. This approach leverages the fact that in regions401

where target density is low, like the mesopelagic, targets occupy a relatively small fraction of the imaging402

volume. This means that in a full, high-resolution reconstruction, the majority of reconstruction planes do403

not contain an in-focus target, and it is possible to reconstruct all targets within the imaging volume using404

a small fraction of the hologram. As such, application of the same method to data collected in coastal areas405

or other high-particle density regions is unlikely to yield significant computational gains.406

These results are significant as they represent a large computational cost saving compared to full407

reconstruction followed by target detection/classification. The DIHM system used here is capable of collecting408

data at 10 Hz, or over 216000 holograms during a 6-hour deployment. With a full reconstruction time409

of 16 minutes per hologram, performing high-resolution full reconstructions of all holograms collected by410

this kind of holographic camera is infeasible. At the same time, there is a wealth of information in these411

data, and by selecting holograms suitable for processing, detecting the presence of particles based on their412

diffraction patterns, and using an optimized reconstruction scheme, large data set information gathering413

becomes tractable. In this paper, we demonstrated that this more selective reconstruction process provides414

sufficiently-focused images for classification at a 60 x savings in computational time. We anticipate that415

these methods are translatable to other holographic data where target distribution is relatively sparse, and416

have made processing codes available online2.417

The methods in this paper will allow for quantitative processing of long time series, large imaging418

volume DIHM data sets, which was previously not practical due to the computational requirements of419

hologram reconstruction. This methodology will enable the development of automatic target classification420

algorithms, which was not previously feasible given the computational cost of extracting individual targets421

from the data. Ultimately, this will allow for estimation of zooplankton abundance, studies of organism422

distribution, and comparison with the acoustic, optical, and genetic sensing capabilities of Deep-See.423
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